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A. Abstract

The basic direction underlying this work is the continuing

study of certain fundamental features associated with the nonlinear

wave propagation which are motivated and arise in physical problems.

The usefulness of the work is attested to by the varied applications,

and wide areas of interest in physics, engineering and mathematics.

The work accomplished relates to fluid mechanics, nonlinear optics,

multidimensional solitons, Painlev6 equations, long time asymptotic

solutions, new linearizations of the KdV equation, Riemann-

Hilbert problems etc.

(1) Research Objectives and Accomplishments

The continuing theme of the work performed under

this grant has been the study of nonlinear wave propagation associated

with physically significant systems. The work has important appli-

cations in fluid dynamics (e.g. long waves in stratified fluids), non-

linear optics (e.g. self-induced tranparency, and self-focussing of

light), and mathematical physics as well as important consequences

in mathematics. Individuals working with me and hence partially

associated with this grant include: Dr. i ;sios Fokas, Assistant

Professor of Mathematics and Computer Sc,.enc,, ;)r. Akira Nakamura,

post doctoral fellow in Mathematics and Computer Science, Mr. Thiab

Taha and Mr. Paulo Santini, graduate students in Mathematics and

Computer Science. Attached please find the technical section of

our recent proposal to A.F.O.S.R. In this proposal many of tne

main directions and results are outlined. In addition we nave

listed all our publications and preprints carried out and conceived

during the period of this grant.
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1,.nally we point out an entirely riew and important area

of study which was developed during the past year. Namely we

have employea a novel linear integral equation which, in principal

allows one to capture a far larger class of solutions to the

Korteweg-deVries equation (KdV) than does the well known Gel'fand-

Levitan-Marchenko equation. In our recent paper attached we

(a) give a direct proof of the above facts; (b) discuss how the

Gel'fand-Levitan-Marchenko equation may be recovered as a special

case, (c) characterize a three parameter family of solutions to

the self-similar O.D.E. associated with KdV and which may be

directly related to the second Painlev4 equation. (We note that

the Gel'fand-Levitan'Marchenko equation only characterizes a one

parameter family of such solutions). In order to carry out (c) we

had to investigate a concrete singular integral equation in which

the contour L consists of 5 rays all passing thru the origin. The

analysis requires the full power (and some extensions) of the

classical theory of singular integral equations.

It should be remarked that (i) the integral equation

applies to potentials of the Schr6dinger equation, even without

the application to KdV or PII; (ii) the motivation for developing

such an integral equation originates from the concept of summing

perturbation series. (iii) Recently Flaschka and Newell considered

PII via monodromy theory. In their work they derive a formal

system of linear singular integral equations for the general solution

of P1 I" However the highly nontrivial question of existence of

solutions was left open. How their work and ours relate is a

question for future research. (iv) The linear version of KdV:

ut+Uxxx = 0 is solved in full generality as a special case.
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Some future directions are: (a) Investigation of the full

generality of the solutions of KdV via this new formulation.

(b) Development of similar types of integral equations for other

nonlinear evolution equations, as well as ones which relate to

natural "equilibrium" states for KdV, other than the zero (or

vacuum) state

The other areas of interest are continuing. They include:

• Investigation of a class of physically significant

nonlinear singular integro-differential equations, and associated

novel scattering problems.

• Transverse Instability of One-Dimensioznal Transparent

Optical Pulses in Resonant Media.

. Perturbations of Solitons and Solitary Waves.

" Focussing Phenomena in Nonlinear Wave Propagation.

" Two-dimensional Lumps and M-ultidimensioal I.S.T.

" A Connection between Nonlinear Evolution Equations

and Nonlinear O.D.E.'s of Painlev4 Type.

* Discrete I.S.T. and Numerical Applications.

• Long Time Asymptotic Solutions.

• Applications of Hirota's Bilinear Theory.
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0. Forward

The main purpose for the continuation of this rese:arcn

funding is to support the work presently being carried out b:

%lark Ablowitz, and his associates, in the Mathematics and Co:.puter

Science Department at Clarkson College of Technology. The

principal investigator has been working in the general area of

nonlinear wave propagation for almost ten years. The scope of

the work is broad, although it has as its principal focus the

uhderstudying of nonlinear phenomena connected with the wave

propagation which arise in physical problems. In recent years

significant breakthroughs have been made and this area of research

is of current interest to mathematicians, physicists, and engineers

alike. During the past year, the active research funds allowed

us to support Dr. J. Satsuma as a Postdoctoral Research Associate

at Clarkson, while he was on leave from Kyoto University. Dr.

Satsuma is a well known authority in this field of research and

he has been a valuable asset to our research program. Dr. Satsuma

returned to Kyoto on September 30, 1980; nevertheless we have

continued to collaborate on problems of joint interest. Subsequently

Dr. Akira Nakamura, also from Kyoto has come to Clarkson as a

Postdoctoral 7ssociate on this grant. Dr. Nakamura has written

a number of significant papers in this area and we expect

collaboration between us to be very fruitful.

The proposal is divided as follows. In the first

section an abstract of the research is given. In the second section

we give a report pf current and proposed research. The third

section gives references; the fourth section contains curriculum

vitaes of the principal investigator and Dr. Nakamura, and the fifth

section contains a proposed budget for two years.
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1. Abstract

During the past two decades sigcnificant advances i: t[:c

study of nonlinear wave nhero~ena have occurred. These advances

have allowed researchers to begin to understand some of tec

fundamental building blocks associated with nonlinear wav.E as

well as being able to obtain solutions to a number of nonlier.-ar

evolution equations. It is important to recognize that these

studies are generic in nature and apply to numerous physical

problems such as propagation of long waves in stratified fluids,

self-focussing in nonlinear optics, self-induced transparency,

water waves, plasma physics, etc.

In the period of time mentioned above, both approximate

and exact methods of solution to problems of physical sig-

nificance have emerged. Especially significant amongst the

exact methods of analysis is what I shall refer to as the

Inverse Scattering Transform and the associated concept of

the soliton. This method has found applications to physics,

engineering and mathematics alike. The results already obtained,

and the wide ranging interest in these problems have motivated

our work. In this proposal we discuss some of the research

problems which we are actively pursuing.
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2. Current and Proposed Peserch

Since this reserch began to be sun-pcrtd by the Air Iorce

Office of Scientific Research, we have actively studie2 a nu:~er

of problems in nonlinear wave theory. In what follows we shall

list some of the areas which we have studied along with the

principal results and future directions.

(a) A Class of Physically Significant Singular Nonlinear

Integro-Differential Equations.

Very recently we have become interested in a class of

nonlinear singular integro-differential equations. The particular

physical application of this problem is to long internal gravity

waves in a stratified fluid. However both the way in which it

arises, and the relevant mathematics strongly suggest that many

other applications will be found as well. In fact private

communications have indicated that there are applications to

plasma physics. The specific equation we have considered is:

ut+2uu +T(uxx)+.1 U = 0 (1)

where T(u) = ) ()coth(x)u()d .

0 represents the principal value integral and 6 is a parameter.

References [1,2) discuss the derivation of (2) in the context

of internal waves. As 6-0 we have the KdV equation

-Ut+2uux+4U = 0, (2)

t X 3 xx

wheras if 6- ' , h e the so-called Bnjamin-Ono equation
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u +2uu +l(u.) 0, (3)

where H(u) = iiW u(d as the 11ilbert transform of u.1 -X

Thus equation (1) contains as limiting forms both the

KdV and Benjamin-Ono equations. The fact that (1) has multi-

soliton solutions ([3], [4]) suggested to us that indeed (1)

may be solvable by the Inverse Scattering Transform (I.S.T.).

In our recent work [5:1, [6] we have found a Bcklund Transfor-

mation, a generalized Miura Transformation, soliton and rational

solutions, interesting dynamical systems and a new type of

scattering problem. This scattering problem is given by the

equation

i ++(u-A)q ' + po- (4)
x

where u satisfies equation (1), and - are the boundary values

of a function analytic in the strips o<1mx<26 for i,

-26<Imx<o for 4-, and periodically extended. Specifically,

equation (4) is a differential Riemann-Hilbert problem. When

?.,' 1 are given by

, = -k c o t h 2 k , = k c o s e c h 2 k 6 ,

and *-(x) = +(x+2i6) (by periodicity) we find that in the limit

6-o we have the Schr6dinger scattering problem

+(k2+u) = 0 (5)
xx
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which is the linear scatte.rin-: prcic- associtcd with tL, C'V cquation

(2). At the present time we are studying the inversc scattering

associated with (4). In our most recent work [7,' we have found

Fredholm integral equations for the Jost functions associatcd

with (4). This is unlike previous local scattering problems

where the Jost functions satisfy Volterra type integral ecquations.

We note that now the scattering problem (4) and associated

nonlinear evolution equation (1) are not local. In those cases

where the Fredholm equations have no nontrivial homogeneous

solutions, we have been able to do the inverse scattering and hence

the corresponding initial value 7robcm associated with (1). This

requires both 6 and maxfu(x)t=0): to be small enough (i.e.,

satisfy certain inequalities - in some sense this is near the

KdV equation). When 6-- (the Benjamin-Ono limit) we have found

homogeneous solutions to the Fredholm integral equation. We

have not yet carried out the complete inverse scattering analysis

when such homogeneous solutions exist. This will be one

important aspect of our future work.

Finally, it should be pointed out that we feel that there

are other significant nonlinear singular integro differential

evolution equations which should fall into the category of

solvable by I.S.T. and processing solitons, we shall also

investigate such possibilities in the near future.

(b) Transverse Instability of One Dimensional Transparent

Optical Pulses in Resonant Media.

It is well-known that ultrashort optical pulses may

propagate coherently, without attenuation in certain resonant
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media [8,9]. This phenomena is co:xnmrily referred to as Seli-

Induced Transparency (S.I.T.) an, has been intensively studied

experimentally, numerically, and analytically by numerous

researchers, motivated at least in part, by significant potcntial

applications. From a mathematical point of view the one

dimensional equations of S.I.T. are very special. Namelv, it

has been shown that these equations can be fully integrated by

the use of the Inverse Scattering Transform [10,112. Specifically,

the above analysis has shown that arbitrary initial values break

up into a sequence of coherent pulses, which do not decay as

they propagate, plus radiation which rapidly attentuates. These

coherent pulses are referred to as solitons.

There are various types of solitons [8,9]; e.g. "27

pulses" ("hyperbolic secant pulses"), "o7 pulses" ("breathers"i

etc. In our paper, "Transverse Instability of One-Dimensional

Transparent Optical Pulses in Resonant Media", [12] we have

shown analytically, that the 2r. pulse is, in fact, unstable

to certain transverse variations (i.e. multidimensional pertur-

bations). These results are consistent with numerical and

experimental studies on the transverse effects in S.I.T. [13-142.

The latter work has shown that transverse variations can lea- to

frequency-amplitude modulations, and in some cases self-focussing

filaments. Similarly in [15) we have recently been able to show

that the breather solution (or pulse) is also unstable to long

transverse perturbations. Mathematically speaking, this work

was difficult because the earlier analysis had to be much further

developed. We point out that this analytical stability calculation

is on a mode which is much more complicated than a permanent travelling
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wave (i.e. a simple soliton 27 pulse). In the future we wish

to examine the stability of a double pole solution (i.e. a

limiting form of a breather solution just before it breaks up

into a two soliton state) as well as attempting to more fully

understand both the properties of the two dimensional model,

as well as looking for new multidimension soliton like solitons

(see also (e)).

(c) Perturbations of Solitons and Solitary W'aves.

The above work on transverse stability of solitons in

S.I.T. led us naturally to the problem of adding general weak

perturbations to equations which admit solitons or solitary

waves as special solutions (both in one and more than one dimension).

Some of the mathematical machinery was already in place due to

the work done in part (b) described above. Ile have found [16]

that, generally speaking, such perturbation problems can be

successfully handled by more or less well known perturbation methods.

We have compared our results to some of those in the literature

which en-ploy the Inverse Scattering Transform (see for exaniple

[17-19]. One advantage to our technique is that it also applies to

problems for which I.S.T. does not apply.

Our analysis shows in some detail that there is quite

different phenomena occurring in different regions of space.

Namely near the peak of the soliton we have adiabatic motion

of the soliton (or solitary wave). Away from the soliton a

linear VW.K.B. theory applies. The results are asymptotically

matched in order to obtain a uniformly valid theory. To our

knowledge this theory is the first such uniformly valid calculation

of a perturbation of a soliton or solitary wave. Previous theories
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,were valid in linited rcfs of s:)c only.

By examining other equations admitting solitary, wave

solutions (i.e. ones which are not solvable by I.S.T.) we

believe that we have discovered a new class of equations %wnich

have focussing sngularities, (namely, equations which have

certain solutions which are "nice" initially, but blow up

in a finite time).

For example, we have discovered evidence that strongly

indicates that the following equation is in this class:

ut+uPux+Uxxx = 0 (6)

for p>.4. We hope to continue to investigate such questions

in the near future. These questions are of both mathematical

and physical interest. For example, such a question arises in

the propagation of water waves ((d) below).

(a) Focussing and instability associated with the

propagation of water waves.

As mentioned, one such physical problem where focussing

occurs is that of water waves. We have considered the evolution

of gravity-capillary waves on a free surface of a layer of fluid

with constant depth. Beginning with the standard equations of

water waves, one can develop the evolution equation of a

modulated weakly nonlinear periodic wave (with fixed central

wave number k) travelling in the x-direction whose amplitude

and phase vary slowly in both the x and y directions. This

problem has been considered by Benney and Roskes [20) and Davey

and Stewartson L21) without surface tension and by Djordjevic

and Redekopp [22) who included this effect. For sufficiently
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'long times, thc complc:.:ww. c ar:plitud' .. (::,v, t) an! mean x,. clt"

potential ¢(xr.,t) satisfy

i2

iA + 0 A + A_ A A + At :. y x

a4 + ¢ = E(fAf 2 ) (7)
xx yy x

Here, al = ±1, 02 = al,a,£ are real constants which depend on

a dimensionless wavenumber and dimensionless surface tension

coefficient. Ablowitz and Segur E23] have shown that there

exists a whole parameter regime where these equations have

solutions which evolve from "nice" initial values into a stato

where the amplitude becomes infinite in finite time! In this

regime the fully nonlinear water wave equations must be

analyzed. Moreover, in [23J it was demonstrated that

all one dimensional soliton solutions to (7) are unstable w.ith

respect to long transverse variations. These results indicate

the need for understanding the true multidimensional character

of the equation. It also should be noted that the w-ork in [233

has motivated recent experimental work. In the future we hope

to consider how these focussing solutions can be understood in

the context of the fully nonlinear water wave equations, as well

as studying potentially solvable multidimensional cases of (7)

(see also (e) below).
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(e) Two-dimensional Lumps in Nonlinear Dispersive

Systems

Suitable (long wave) limits of the above equation of

governing water waves (7) [21-22] reduce to

iAt -OAxx + A =o 2 AIAJ
2 + 2a2xA

2
ai- + (IAI ) (8)1 xx yy x

al' 02 = +i, or for very long waves (comparable to the weak

nonlinearities):

(U +6uu +U + au =0, (9)Ut + 6x Uxxx) x 3Uyy

a = +1. Both of these equations belong to te class of nonlinear

evolution equations where I.S.T. is applicable [24,25J. Indeed,

recent work on the complete integration of these and also the

three wave interaction equations has been undertaken very recently

[see for example 26,27,281. Alternatively, via Hirota's method,

N plane wave soliton solutions can be directly constructed [see

for example 29]. These latter solutions are quasi-one dimensional;

they describe the multiple collision of N solitons each of which

may propagate in different directions, but which do not decay

at infinity.

It is of interest to find essentially two-dimensional

solitons which would be analogues of those in one dimension.

By taking limits of the N-plane wave soliton solutions described

above and choosing certain parameters appropriately, we have

discovered permanent two-dimensional nonsingular lump type

solutions decaying in all directions to equation (9) [30,
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sue also 31 1. Con' ii!ii nq iin that i-ircction we have investi';zated

analogous solutio:,-; witciated ;ith cc;uation (8). We have sho-.n

that eq. (8) possesses a lump solution of envelope hole type.

Moreover, we have cconL;tructed solutions describing multiple

collisions of lumns to both ecs. (8), (9) [32). It is of

interest to see now these solutions can be fit into the I.S.T.

picture and also to investigate other equations which may give

rise to such multidir-nsional lump type solutions (e.g. S.I.T.,

the self dual Yang Mills equations etc.). We hope to investigate

such questions in the future as well as to study the generality

of the initial value solutions of such equations obtained by I.S.T.

(f) A Connection Between Nonlinear Evolution Equations

and Certain Nonlineac O.D.E.'s of Painlev6 type

The development of the inverse scattering transform (I.S.T.)

has shown that certain nonlinear evolution equations possess

a number of remarkable properties, including the existence of

solitons, an infinite set of conservation laws, an explicit set

of action angle variables, etc. We have noted in [33) that

there is a connection between these nonlinear partial differential

equations (PDE's) solvable by I.S.T. and nonlinear ordinary

differential equations (ODE's) without movable critical points.

(Some definitions: a critical point is a branch point or an

essential singularity in the solution of the ODE. It is movable

if its location in the complex plane depends on the constants of

integration of the ODE. A family of solutions of the ODE without

movable critical points has the P-property; here P stands for

Painlev6.) In [34-36'1 we have announced and developed a number

of results which.indicate that this connection to ODE's of P-type

is yet another remarkable property of these special nonlinear PDE's.

p t
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We have conjecture6 thzat:

Every nonlinear ODE obtained by a similarity reductio:
of a nonlinear PDE of I.S.T. class is, perhaps after
a transformation of variables, of P-type.

Here we refer to a nonlinear PDE as being in the I.S.T. class

if nontrivial solutions of the PDE can be found b. solvina

a linear integral equation of the Gel-Vand-Levitar.-i.'archenko

form. No general proof of this conjecture is available ,et,

but we have proven a more restricted result in this direction.

It is known that under scaling transformations certain nonlinear

PDE's of I.S.T. class reduce to ODE's. Moreover, the solutions

of these ODE's may be obtained by solving linear integral equations.

We have shown that every such family of solutions has the

P-property.

We note that the conjecture in its strongest form relates

to ODE's obtained from equations solved directly by I.S.T.

There are many examples of equations solved only indirectly

by I.S.T.; the sine-Gordon equation is one of the best known

examples. An ODE obtained from an equation solved indirectly

by I.S.T. need not be of P-type, but it may be related through

a transformation to an ODE that is.

One consequence of this conjecture is an explicit test

of whether or not a given PDE may be of I.S.T. class; namely,

reduce it to an ODE, and determine whether the ODE is of P-type.

To this end, we identify certain necessary conditions that

an ODE must satisfy to be of P-type and describe an explicit

algorithm to determine whether an ODE meets these necessary

conditions. -.

Finally, we have exploited this connection in order to

develop both solutions and asymptotic connection formulae to



-18-

some of the classical transcendcnts of Painleve [37J as wefl

as others.

In the future we shall consider the folloving problens:

(1) the complete connection formulae (i.e. the global connection

of asymptotic states) for the interesting Painlev6 equations

associated with linear Gel'fand-Levitan-Marchenko equations;

(2) To prove that the O.D.E.'s which we have derived, in fact

satisfy the property that they have no movable essential

singularities, regardless of initial conditions; (3) To

develop solutions to these O.D.E.'s which correspond to general

initial conditions. In this regard the recent work of Flaschka

and Newell [38i may be of interest. (4) Study the connection

between the Bgcklund transformations developed in the Russian

literature (see the review [39]) and by Fokas [401 and their

connection to I.S.T. and monodromy preserving deformations.

(g) Discrete I.S.T. and Numerical Schemes

It is significant that many of the concepts related to

the inverse scattering theory apply to suitably discretized

nonlinear evolution equations; for example the Toda lattice,

and discrete nonlinear Schr~dinger equation (see for example

[41), [423). It is of interest to ask whether one can solve

partial difference equations (i.e. numerical schemes) by inverse

scattering. An obvious application would be to numerical

simulations. We have succeeded in analytically developing such

schemes [43]. These schemes can be shown to converge to a

given nonlinear P.D.E. (which itself is solvable by inverse

scattering) in the continuous limit. Moreover they have the

nice property that they are neutrally stable, have exact soliton

solutions and possess an infinite number of conserved quantities.
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Recently we have (a studcnt, T. Taha an2 myself) begun to

compare the practical numerical simulation of a given nonlinear

P.D.E. (e.g. cubic nonlinear Schr6dinger or KdV) using traditional

methods, with our newly developed schemes. In this sense, w

hope to assess the usefulness of various numerical schemes

on important model nonlinear problems. Preliminary results

indicate very encouraging possibilities for these "new"

schemes developed via I.S.T.

(h) Asymptotic Solutions

Aspects of the asymptotic solution of equations solvable

by I.S.T. have been discussed by many authors. For a review

of much of this work the reader may wish to see [373. Despite

all of the work already done on this question, the problem of

long time asymptotic state evolving from initial data containing

both solitons and the dispersive wavetrain remained unresolved.

Indeed the separate questions of finding the asymptotic states

evolving from initial conditions containing only pure solitons

or pure dispersive waves had been solved. The difficulty that

must be overcome when both states are present is that the

solitons and dispersive wavetrain are of differing exponentially

small asymptotic orders in certain regions of space. Recently

[44] we were able to completely resolve this question for KdV.

Moreover we find explicit formulae giving the phase shift of a

soliton when it interacts with both solitons as well as the

dispersive waves. A corollary to this result is the-definition

of a "perfect soliton' of an evolution equation; i.e. one which

in the long time limit interacts elastically with any sufficiently

localized disturbance.
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We feel thc< idc.a. anrd itnoL dciicr ib&c1 in [44.1

apply in principle, to other nonlinear evolution equations

solvable by I.S.T. We hope to investigate this question for

some of the other nonlinear-evolution equations solvable by

I.S.T. (e.g. Nonlinear Schr6dinger, Modified KdV, etc.)

(i) Recent Work by A. NAKAMURA

(a) A direct method of obtaining multiple periodic

wave solutions

Recently the study of multiply periodic wave solutions

to nonlinear evolution equations has been attracting the interest

of numerous scientists. Here multiply periodic wave solutions

correspond to the nonlinearly superposed state of several

nonlinear periodic waves. This also corresponds to the periodic

generalization of the so-called multiple soliton solutions of

nonlinear evolution equations.

So far the analytic theory to calculate these

multiply' periodic wave solutions has been based on the theory of

rather abstract multidimensional Riemann surfaces. Recently we

have developed a completely independent and different approach

to this problem, based on Hirota's direct method developed in

soliton theory [45J. Just as the name indicates, our method

is very direct. The direct method is constructed by elementary

techniques. By this direct method, we have obtained multiply

periodic wave solutions [46J of the intermediate long wave

equation [47) which includes the KdV equation and Befijamin-Ono

equation as limits. This intermediate long wave equation is

considered to be.important in the description of internal wave

soliton pnenomena and has recently attracted wide interest [48).



-21-

At prose'Ut, our (Iiirect aci:roach h*.(c.xvcr has :: do,.'led

to calculate only up to a 2-periodic wave solution. V-e hope

to extend our direct method to treat arbitrary N-pcrio2ic %.:ave

solutions.

(b) Cylindrical solitons, solitons in multi-diriensional

systems

Investigations of solitons in multi-dimensional systems

are important especially in view of the actual application to

the real physical phenomena. Hlere just as the KdV equation

has crucial importance as a model equation in one-diiensional

nonlinear dispersive systems, the so-called cylindrical KdV [49]

and spherical KdV [50] equations are important model equations

respectively in two and three-dimensional nonlinear dispersive

systems. Both cylindrical and spherical solitons have been

studied experimentally and numerically [49,51). However so

far exact analytical solutions to these equations are either

not known (in the case of spherical KdV equations) or could not

reproduce experimental and numerical results (in the case of

cylindrical KdV equation [533). By generalizing Hirota's direct

method appropriately, we have obtained a new analytic solution

of the cylindrical KdV equation which does correctly reproduce

experimental and numerical results [54]. We have also calculated

the Backlund transformation for the cylindrical KdV equation [55).

These soliton solutions have a certain self similar character.

Although the cylindrical KdV equation has been successfully

analyzed, the analogous solutions of the spherical KdV equation is

not obtained by a straightforward application of the method to

solve the cylindrical KdV equation. However since the cylindrical

and spherical KdV equations are very similar to each other in form,

there is a possibility that a generalization of the method to
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soive the cylindrical 1,cwV quation can solve the spherical one.

We are considerin(; SuclI a generalization.

c) Multiple decay mode solutions of nonlinear

evolution equations.

In the case of the cylindrical KdV equation which

has been discussed above, due to conservation of energy, the

inwardly running "ring-form" soliton grows in amplitude and

the outwardly running one decays. Thus it is natural to suspect

that the similarity type solitons which appear in the cylindrical

KdV equation have some relationship to decaying modes of

other nonlinear evolution equations. In fact, guided by this

consideration, very recently we have found certain similarity

type multiple decay mode solutions of the two-dimensional KdV

(Kadomtsev-Petviashvili) equation [56). Furthermore it has

been found that these newly found decaying mode solutions and

usual soliton solutions can be nonlinearly superposed with each

other. Further investigation of these and other solutions of

two-dimensional KdV, and their relationship to I.S.T. is

under consideration.

d) Chain of B5icklund transformations

It is well known that the typical nonlinear evolution

equations of current interest, KdV and modified KdV (=mKdV)

equations are related with each other by the Miura transform

or (non-auto) B~cklund transform. In fact this process continues

to other equations sequentially. To grasp general characteristics

of this important Bgcklund transform, it is worthy to study

this series further. We have recently carried out the study of

such B~cklund transform chains e.g. XdV-mKdV-'second mKdV"
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L 5l1-)-"third. rKdV".. 58J whc rc arro*.'s le note 131IA'c K lun§ tra±nsfor In.Is

It is further hoped that from these studies, it will be p,.ossible

to extract some meaningful information about the nature of

the Backlund transform itself L58J.
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Linearization of the Korteweg-de Vries and Painlevi 11 Equations
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(Received 22 Mlay 1981)

A new integral equation which linearizes the ]Rorteweg-de Vries and Painlevi 11 equa-
tions, and Is related to thc potentials of the Schr~5dinger eigenvalue problem, is present-
ed. This equation allows one to capture a far larger class of solutions than the -Gel'fand-
Lovitan equation, which may be recovered as a special case. As an application this
equation, with the aid of the classical thcory of singular ictegra equations, yields a
three-parameter family of solutions to the self-similar reduction of Korteweg -de Vries
which Is related to Palnlev6 11.

PACS numbers: 02.30.+g

Since the work of Gardner etal, in 1967,' there has been wide interest in the analysis o f nonlinear
evolution equations solvable by the so-called inverse -scattering transform (1ST). The prototype exam-
pie is the Korteweg-de Vries (KdV) equation

U5j 
6 UU 3+UgjgjgO.(1

In this note we shall present a new linear integral equation which, In principle, allows one to capture a
far larger class of solutions than does the Gel'fand-Levitan equation. Specifically we claim that if
go(k; x, 1) solves

where dA(k) and L are an appropriate measure and contour, respectively, then

solves the KdV equation. The well-documented physical significance of the KdV equation, of its self -
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similar analogue, and of the associated Schr6dinger scattering problem require us to attempt to char-
acterize the form of the most general solution/potential possible.

We now enumerate the basic results given in this note. (i) We give a direct proof that (2) and (3) solve
(1); (ii) we show how the well known Gel'fand-Levitan equation can be obtained from (2) as a special
case; and (lii) we characterize by a matrix Fredholim equation a three-parameter family of solutions to
the similarity ordinary differential equation of (1) which is directly related to the classical second equa-
tion'of PainlevE (P 11). We end with some remarks regarding the role of Bicklund transformations and
relevant generalizations.

We now consider (I). The point of view we take here is, in spirit, similar to that of Zakharov and
Shabat.2 Specifically, by direct calculation we show that solutions of (2) substituted in (3) satisfy (1).

* We make two assumptions: (a) dA and L are such that differentiation by x, t may be interchanged with
* 

1
L; (b) the homogeneous integral equation has only the zero solution. Defining . 3uS,, where Y.,

= + 8., after some manipulation we find

ZL'(k; x, t)+ i exp(i(kx+kt)k 10 =i (4)

Similar calculations show that the quantity in brackets in the right-hand side of (4) satisfies the homo-
geneous integral equation. Hence A 9=k p, + i (p,+ iu p= 0 which implies 4= 0, whereupon &SSL(1.p)dX
=0 is (1). Moreover the equation Mkp=0 is directly related to the Schr6dinger eigenvalue problem. If
we define

,p(k; x, t) -0(k; x, t )exp[i(kx k't )12],

then iGjo,, 0 gives

0.2 + (jk) +O-*=0. (5)

Next we pass on to (it). The classical theory of inverse scattering and appropriately decaying solutions
of KdV may be most easily obtained as follows. Let the measure dX(k) = r0( k) dk/2%, where re(k) is the
usual reflection coefficient of u (v, 0) and the contour L goes over all the poles of r(k). [Here we have
assumed, for convenience, that u(v,0) - 0 rapidly as I xI - .o.1 Then substituting the expression for 4p
into (2), defining

K(x, y, t )= -()jL*(k; x, t)exp[ i(ky+k ' t)/2]dX(k),

and using

exp[i(k.t)x/2]/(l] k)-i{f .exp[i(k 1)4/2]/2d4

(k, I satisfy In, Iml > 0), we obtain

K(x, y t)+Fx~y; t)+f.'K(x, J; t)FQ+(y; t)d4=0, (6)

where

F(x, t)-()f~exp(i(kx/2+kt)dX(k), (L passes through the k= iK). Then (2) reduces
to a linear algebraic system from which the well

and m(x, )= 2sr(x, x; ). Hence by choosing the known N-soliton solution is immediately obtained.
above measure dA and contour L the Gel'fand- We now discuss (iii). The KdV equation admits
Lvitan equation (6) may now be completely by- the similarity transformation u(x, 1)= a(x*y(3t)2/3,
passed, where x'=x/(3t)'/1. The equation for U is given

Soliton solutions of (1) may be calculated in a by (dropping the primes)
particularly easy manner from (2). Locations of
the poles on the imaginary k axis In r(k, 0) corre- KJ(U) - U" + 6UU'- (2U+xU')=0. (7)
spond to soliton amplitudes, and the residues of We note that (7) is directly related to P-
r(k, 0) at these locations play the role of the nor-
malization coefficients. Pure solitons may also P(V)- V"- xV- 2V3ua. (8)
be obtained by taking the measure as Specifically we note that the transformations U

dX(k),.tcJ6,(k - ,)d =- V'- V', V(U' a)/(2U- x) relate (8) to the
0l
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equation self-similar reduction. Moreover the contours

K2(U) a U'+ 2UI - xU (+ U'-(U')I/(2U-x) =0 L, are obtained by finding the solution to the lin-
ear problem (U=w.) vw-(w+ xw')=0 in terms of

with v, a(a + 1). However, by direct calculation integral representations and then deforming these
[(2U-x)4,(U)]'=(2U-x)K,(U), hence KI(U) is an contours so that they all pass through the origin.
integral of (7), and thus there is a direct trans- For example, note that L, +L, may be deformed
formation between (7) and (8).1 One may make to the usual Airy-function contour. If we restrict
use of these transformations fo find all the known ourselves to this Airy contour, the result in Ref.
(see, for example, Lukashevich' and ErugiTn') 5 is obtained in the same manner as that in (ii)
elementary solutions of P IL Ablowitz and Segur s  above.
had established a connection between P II and IST We shall proceed to demonstrate that (9) may be
and had characterized a one-parameter family of reduced to a system of Riemann-Hilbert problems
solutions via the Gel'fand-Levitan equation. Re- which are solvable using Fredholm theory. For
cently Flaschka and Newetl e considered P [1 via this we need the full power of the classical theory
monodromy theory. In the latter work the authors of singular integral equations."''
derived a formal system of linear singular inte- Consider the sectionally holomorphic function
gral equations for the general solution of P I.
However, the highly nontrivial question of exis- O(z) r 9(l.) d. (10)
tence of solutions was left open. 2 i T-x

An application of the result presented above in The lines of discontinuity of 4(s) are L,; thus
(I) is that a three-parameter family of solutions using the Plemelj formulas, we have
of (7) may be obtained from the linear singular
integral equation V()=((u7) tdr; ton-L,,qpt .- f'(T dw(t,. ton , (9)("

Ti-JL + I ln~drtonL,

where b(t)f(t)exp i(tx+ t3/3)] and IL where 4'(t) for t on L, has the standard defini-
s., Aj Jf, (see Fig. 1), A, = A2 = p,, - =A34 P, tions'" of limits of *(&) as z - t from the "left-

& a P. (Hereafter j always stands for j = .... hand side" (+) and "right-hand side" (-) of L,,
5). The solution to (7) is then obtained from and where principal-value integrals are implied

1m I a_ fjwhen needed. With use of (11), and Eq. (9) for t

Irex- on L, and -t on -L,, we obtain a system which~we choose to write in the form.
(V depends parametrically on x). We note that -.

both (9) and U are obtained from (2) and (3) by a *+(t) = G(1)±_.(t) +r(l), I on Zj, (12)

where L, = L4 + (-L,), ±(t) " t), *(-t ) r,Ls "(') =±"(-t), F(t)-ulf(t)&(a), -I (-t)li(-t)] r ,

C"Ls I "L B(t) ={A ift Ion L,, 0 ift on -Lj and the compo-

L e onents of the 2 x2 matrix G(1) are G 1,(t)=-2b(t)I, ~ xft) =-G,,(-t), G,, -G2x1. r

L2 One can prove the following statements.
L "2(a) 4 (-t), 4-(-t) are "minus" and "plus" func-
3 tions, respectively. (b) Necessary conditions for

F solvability of (12) are the symmetry conditions__L
_L G(t) =G(-t)]", 1(t) G(t)F(-t) =0, which are

3 satisfied by the above C, F. (c) Thus (12) defines
a system of discontinuous Riemann-Hilbert prob -

D lems with the additional restriction that *-(t)
L=- (-t). However this condition can be-relaxedDsince 

one can show that (12) always admits a
L4L4 LS  solution with this restriction, and moreover, in

our case the solution Is unique.
110. 1. Contours asolated with Eqs. (9) and (12). In order to solve (12) we first consider the
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homogeneous problem. The standard procedure such that w,, * and w 1s are plus and minus func-

is to transform the discontinuous homogeneous tions, respectively (e.g., the branch cut for w,,h

problem to a continuous one, and then obtain the is taken between 0, --_j and hence lies to the

fundamental set of solutions, right of E j). The prdpertles wj,(O+) -eXp-fjkj, ,
Associated with a given contour rj, define the wj,(0-) Mexp[uA 11JX, W,,(t) =cu,'(-t) allow us

following auxilliary functions to map the homogeneous system () - G(i)_±-(t

( % which has a discontinuity at t a.0 To the following
ck t () /t) -I Rlemann-Hilbert system which is continuous at

I ) the origin:

U k-1,2, (1(3) g(1)W(I), Ion L, (14)
where we have used the transformation #4()

where zj is some j-dependent fixed point off Lj. =An(t)* (t), 4(t) .AD(t)*() and hence g([)

The branches of the above functions are chosen =[5([)j'A"G()AW([), with A, n*(t) defined
by

2A , Mexpjiux, 1/21 2A, exp[ixn/2]1 fl1* (Wia" (15)

( expLizx,,/2] expLivx.,/2] / 0 w,

-where for j - 2, 3, 4 we have a a I, 3=- 2 and forj =1, 5 we have a = 2, 9 =; the A,, and A,, are defined

by

expjiwtj,]=+,(l+A2)1/2, expjiirXn]f-A, = +(1. 2 ) A, .s=exp[2i27x,j, A,, exp(2i0X,J.

The matrix g(t) has the properties g(t) =jg(-t) I" and detg=-1.
One may characterize a solution of the system (14) by imposing the condition _(Z) - A - U I -

in A-. This leads to a Fredholm equation for, say, _ *4t), which however must be interpreted in a

suitable principal-value sense as it does not converge in the normal sense at infinity. Alternatively,

one may obtain a regular Fredholm equation of the second kind by imposing conditions at a finite point

off all contours, say z = 1. This leads to the following Fredholm equation for **(I):

*(t +j4  Lj-- fj()g(-7) -I]j!()dT g,(t)13, I on LE, (16)

where J 41), fL , 4 f , and I is
the unit matrix. "Any two linarly Independent _ point property of U is easily verified.

vectors, say 0 .,, lead to a fundamental matrix Finally, we make some remarks. First, we

Y * (t), *(t)] for the system (14). only expect from (2) to obtain solutions to P U in
With use of the above results the fundamental the range -I < a < 2. To obtain the solution for

matrix of the discontinuous problem (12) is given all ranges of a, we believe, the Bicklund trans-

by formations (following Rosales'*) and "finite per-

X (t),A1*4t)[ t,*(t), * *(1). (17) turbations" (see, for example, Ablowitz and
Cornille") of suitable elementary solutions must

Hence the solution of (12) is given by be employed. Similarly, wider classes of solu-
tions to KdV should be obtainable this way (we
shall remark on this more completely in the fu-
ture). Second, straightforward generalizations

2 21-- l. 1 dT. (18) to the higher-order KdV equations, as well as to
2 'L r- Imany other nonlinear evolution equations, are

possible. Third, motivation for some of the ideas

Having obtained *(t) and using (11) to obtain in this note originate from the concept of sum-
p(t), we have characterized a three-parameter ming perturbation series. Relevant perturbation

family of solutions of U. With use of the results series can be readily developed (see, for exam-
of Fredholm's theory the nonmovable critical- pie, Refs. land 12).
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